FOLIATED MANIFOLDS WITH FLAT BASIC CONNECTION

ROBERT A. BLUMENTHAL

1. Introduction and statement of results

Let \mathfrak{F} be a smooth codimension-q foliation of a smooth manifold M. Let T(M) denote the tangent bundle of M, and let $E \subset T(M)$ be the subbundle consisting of the vectors tangent to the leaves of \mathfrak{F} . Let Q = T(M)/E be the normal bundle of \mathfrak{F} , and let F(Q) be its frame bundle, a principal GL(q, R) bundle. Recall that a connection on F(Q) is said to be basic if the parallel translation which it defines along paths lying in a leaf of \mathfrak{F} agrees with the "natural parallelism along the leaves" [3]. Equivalently, if π : $T(M) \to Q$ is the natural projection, and if $\Gamma(E)$, $\Gamma(Q)$, and $\mathfrak{K}(M)$ denote the space of smooth sections of the vector bundles E, Q, and T(M) respectively, then the associated Koszul operator $\nabla \colon \mathfrak{K}(M) \times \Gamma(Q) \to \Gamma(Q)$ satisfies the condition that $\nabla_X Y = \pi([X, \tilde{Y}])$ for all $X \in \Gamma(E)$ and all $Y \in \Gamma(Q)$, where \tilde{Y} is any vector field on M such that $\pi(\tilde{Y}) = Y$, and $[X, \tilde{Y}]$ denotes the usual Lie bracket of vector fields [2]. In the present work we study foliated manifolds supporting a flat basic connection, that is, a basic connection with vanishing curvature and torsion.

To begin, we have the following nonexistence result.

Theorem 1. If M is compact with finite fundamental group, then M does not support a foliation with flat basic connection.

As a corollary to the proof of Theorem 1, we will obtain

Corollary 1. Let (M, \mathcal{F}) be a foliated manifold with flat basic connection. If $H_1(M, Z) = 0$, then \mathcal{F} admits a transverse volume element; that is, \mathcal{F} is defined by a nowhere zero closed q-form on M, $q = \text{codim}(\mathcal{F})$.

It is well-known (see, e.g., [6]) that the universal cover of an n-dimensional manifold supporting a complete flat linear connection is R^n where the lifted connection corresponds to the canonical linear connection on R^n . We generalize this codimension-n result to foliations of arbitrary codimension.

Theorem 2. Let (M, \mathfrak{F}) be a foliated manifold with a complete flat basic connection. Then the universal cover \tilde{M} of M is a product $\tilde{L} \times R^q$, where \tilde{L} is the (common) universal cover of the leaves of \mathfrak{F} , the leaves of the lifted foliation are identified with the sets $\tilde{L} \times \{x\}$, $x \in R^q$, and the lifted connection corresponds to the basic connection on $\tilde{L} \times R^q$ determined by the canonical linear connection on R^q .

Corollary 2. If M^n supports a nonsingular flow with a complete flat basic connection, then the universal cover of M^n is R^n .

Corollary 3. Let (M^n, \mathfrak{F}) be a codimension-(n-2) foliation with a complete flat basic connection. Then either

- (i) the universal cover of M^n is R^n , or
- (ii) the leaves of \mathcal{F} are spheres and projective planes.

Theorem 3. Let \mathcal{F} be a codimension-one foliation of a compact manifold M with a complete flat basic connection. Then either

- (i) all the leaves of F are dense, or
- (ii) all the leaves of \mathfrak{F} have polynomial growth of degree $\leq \beta_1(M)$, the first Betti number of M.

In particular, F has no exceptional minimal sets.

2. Proofs of the theorems

Let (M, \mathfrak{F}) be a foliated manifold with a flat basic connection. Via a choice of Riemannian metric on M, we may regard Q as a subbundle of T(M) complementary to E. Thus $T(M) = E \oplus Q$, and the covariant differentiation operator ∇ corresponding to the basic connection then satisfies

$$\nabla_X Y = [X, Y]_Q$$
 for all $X \in \Gamma(E), Y \in \Gamma(Q)$,

where $[X, Y]_Q$ denotes the Q-component of the Lie bracket of the vector fields X and Y.

Let $p: F(Q) \to M$ be the bundle projection. The connection on F(Q) gives rise to a smooth GL(q, R)-invariant distribution H on F(Q) such that $T(F(Q)) = V \oplus H$ where $V \subset T(F(Q))$ is the subbundle consisting of vertical vectors, i.e., vectors tangent to the fibers of p. Let ω be the corresponding connection form, a smooth gl(q, R)-valued one-form on F(Q). The curvature form is the gl(q, R)-valued two-form Ω on F(Q) defined by $\Omega_u(X, Y) = (d\Omega)_u(X_H, Y_H)$, $u \in F(Q)$, $X, Y \in T_u(F(Q))$ where X_H and Y_H are the H-components of X and Y respectively. For $u \in F(Q)$, $X \in T_u(F(Q))$, let $\theta_u(X)$ be the ordered q-tuple of real numbers obtained by taking the components of the vector $(p_{*u}(X))_Q$ with respect to the basis u of $Q_{p(u)}$. Then θ is a smooth R^q -valued one-form on

F(Q). The torsion form of H is the R^q -valued two-form Θ on F(Q) defined by

$$\Theta_u(X,Y) = (d\theta)_u(X_H, Y_H), \quad u \in F(Q), X, Y \in T_u(F(Q)).$$

Since H is flat, we have $\Omega = \Theta = 0$.

Let $(\omega_j^i)_{i,j=1}^q$ and $(\Omega_j^i)_{i,j=1}^q$ be the components of ω , respectively Ω , with respect to the standard basis of gl(q,R). Let $(\theta^i)_{i=1}^q$ and $(\Theta^i)_{i=1}^q$ be the components of θ , respectively Θ , with respect to the standard basis of R^q . Since $\Theta^i=0$ for $i=1,\cdots,q$ and $\Omega_j^i=0$ for $i,j=1,\cdots,q$, the structure equations of the connection take the form

$$d heta^i = -\sum_j \omega^i_j \wedge heta^j, \quad i = 1, \cdots, q$$
 $d\omega^i_j = -\sum_k \omega^i_k \wedge \omega^k_j, \quad i, j = 1, \cdots, q.$

Let $h \in R^q$. For each $u \in F(Q)$, let $B(h)_u$ be the unique horizontal vector in $T_u(F(Q))$ such that $p_{*u}(B(h)_u) = h_1 u_1 + \cdots + h_q u_q$ where $h = (h_1, \cdots, h_q)$, $u = (u_1, \cdots, u_q)$. This defines the basic vector field B(h) on F(Q) corresponding to h. Clearly $\theta(B(h)) \equiv h$ for all $h \in R^q$. Let $\{e_1, \cdots, e_q\}$ be the standard basis of R^q , and $B(e_1), \cdots, B(e_q)$ the corresponding basic vector fields.

Let $x \in M$ and $u \in p^{-1}(x)$. Since $\Omega = 0$, the distribution H is integrable, and hence we can find a neighborhood U of x in M and a smooth section $s: U \to F(Q)$ such that s(U) is an integral manifold of H. For $y \in U$, set $X_{i_y} = p_*(B(e_i)_{s(y)}), i = 1, \cdots, q$. Then X_1, \cdots, X_q are smooth independent normal vector fields on U. We have

$$0 = \Theta(B(e_i), B(e_j)) = d\theta(B(e_i), B(e_j))$$

$$= B(e_i)\theta(B(e_j)) - B(e_j)\theta(B(e_i)) - \theta([B(e_i), B(e_j)])$$

$$= -\theta([B(e_i), B(e_j)]),$$

and so $[X_i, X_j]_Q = 0$. Since X_1, \dots, X_q are parallel with respect to the connection H, and hence parallel along the leaves of \mathcal{F} , there exists (shrinking U if necessary) a smooth submersion $f: U \to R^q$ such that kernel $(f_{*v}) = E_v$ and

$$f_{*y}(X_{i_y}) = \frac{\partial}{\partial x^i}\Big|_{f(y)}, \quad i = 1, \dots, q \quad \text{for all } y \in U.$$

Let $F(R^q)$ be the frame bundle of R^q , and ω' be the connection form on $F(R^q)$ corresponding to the canonical linear connection on R^q . Let $f_*: p^{-1}(U) \to F(R^q)$ be the map induced by f. Since H is a basic connection for \mathfrak{F} , it follows that the foliation of $p^{-1}(U)$ whose leaves are the level sets of f_* is horizontal. Thus we have decompositions

$$(1) H = \operatorname{kernel}(f_*)_* \oplus \operatorname{span}\{B(e_1), \dots, B(e_q)\},\$$

(2) $T(F(Q)) = V \oplus \operatorname{kernel}(f_*)_* \oplus \operatorname{span}\{B(e_1), \dots, B(e_q)\}.$ Since ω and $(f_*)^*\omega'$ agree on each of the subbundles occurring in (2), we have that $\omega = (f_*)^*\omega'$ on $p^{-1}(U)$. Thus we can choose an R^q -cocycle $\{(U_\alpha, f_\alpha, g_{\alpha\beta})\}_{\alpha,\beta\in A}$ on M where

- (i) $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ is an open cover of M;
- (ii) $f_{\alpha}: U_{\alpha} \to R^q$ is a smooth submersion constant along the leaves of \mathcal{F}/U_{α} ;
- (iii) $g_{\alpha\beta}$: $f_{\beta}(U_{\alpha} \cap U_{\beta}) \to f_{\alpha}(U_{\alpha} \cap U_{\beta})$ is a diffeomorphism satisfying $f_{\alpha} = g_{\alpha\beta} \circ f_{\beta}$ on $U_{\alpha} \cap U_{\beta}$ such that $(f_{\alpha})^*\omega' = \omega$ on $p^{-1}(U_{\alpha})$ for each $\alpha \in A$.

If $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then we have $(f_{\beta_*})^*(g_{\alpha\beta_*})^*\omega' = (g_{\alpha\beta} \circ f_{\beta})^*_*\omega' = (f_{\alpha_*})^*\omega' = \omega = (f_{\beta_*})^*\omega'$. Hence $(g_{\alpha\beta_*})^*\omega' = \omega'$ on $F(R^q)|_{f_{\beta}(U_{\alpha}\cap U_{\beta})}$, and so $g_{\alpha\beta}$ is the restriction of an affine transformation of R^q . Let $\pi \colon \tilde{M} \to M$ be the universal cover of M. There exists a submersion $f \colon \tilde{M} \to R^q$ constant along the leaves of $\tilde{\mathcal{F}} = \pi^{-1}(\tilde{\mathcal{F}})$ [1]. This is clearly impossible if M is compact with finite fundamental group thus proving Theorem 1.

Let G be the group of affine transformations of R^q , that is, the semi-direct product of R^q and GL(q, R). By [1], there is a homomorphism $\Phi: \pi_1(M) \to G$ such that for each covering transformation $\tau \in \pi_1(M)$ the diagram

$$\widetilde{M} \xrightarrow{f} R^{q}$$

$$\downarrow \qquad \qquad \qquad \downarrow \Phi(\tau)$$

$$\widetilde{M} \xrightarrow{f} R^{q}$$

is commutative. Let $\rho: \pi_1(M) \to R$ be the composition

$$\pi_1(M) \stackrel{\Phi}{\to} G \stackrel{\alpha}{\to} GL(q,R) \stackrel{\det}{\to} R$$

where α is projection onto the GL(q,R) factor, and det denotes the determinant function. If $H_1(M,Z)=0$, then ρ is the trivial homomorphism, and hence the image of Φ is contained in the subgroup of G given by the semi-direct product of R^q and SL(q,R). Thus we can find an R^q -cocycle $\{(U'_{\alpha}, f'_{\alpha}, g'_{\alpha\beta})\}_{\alpha,\beta\in A'}$ defining $\mathscr F$ such that each $g'_{\alpha\beta}$ preserves the natural volume element on R^q . This induces a nowhere zero closed q-form on M defining $\mathscr F$.

Suppose now that H is complete. Then H lifts to a complete flat basic connection \tilde{H} on the bundle of normal frames of $\tilde{\mathfrak{F}}$. Since \tilde{M} is simply connected, the holonomy group of \tilde{H} is trivial and hence $\tilde{\mathfrak{F}}$ is a transversely complete e-foliation [3]. Thus the leaf space $\tilde{M}/\tilde{\mathfrak{F}}$ is a smooth Hausdorff q-dimensional manifold, and the natural projection $\tilde{M} \to \tilde{M}/\tilde{\mathfrak{F}}$ is a smooth fiber bundle whose fibers are the leaves of $\tilde{\mathfrak{F}}$ [3], [4]. Let $\tilde{\nabla}$ be the covariant

differentiation operator arising from the connection \tilde{H} . Let X and Y be smooth vector fields on $\tilde{M}/\tilde{\mathfrak{F}}$. Let \tilde{X} and \tilde{Y} be smooth normal vector fields on \tilde{M} which are parallel along the leaves of $\tilde{\mathfrak{F}}$ and project to X and Y respectively. Then if \tilde{Z} is a smooth vector field on \tilde{M} tangent to the leaves of $\tilde{\mathfrak{F}}$, the vanishing of the curvature of \tilde{H} gives $\tilde{\nabla}_{\tilde{Z}}\tilde{\nabla}_{\tilde{X}}\tilde{Y}=\tilde{\nabla}_{\tilde{X}}\tilde{\nabla}_{\tilde{Z}}\tilde{Y}+\tilde{\nabla}_{[\tilde{Z},\tilde{X}]}\tilde{Y}$. But $[\tilde{Z},\tilde{X}]$ is tangent to $\tilde{\mathfrak{F}}$ since \tilde{X} is parallel along the leaves, we have $\tilde{\nabla}_{\tilde{Z}}\tilde{Y}=\tilde{\nabla}_{[\tilde{Z},\tilde{X}]}\tilde{Y}=0$. Thus $\tilde{\nabla}_{\tilde{X}}\tilde{Y}$ is parallel along the leaves of $\tilde{\mathfrak{F}}$, and hence projects to a vector field $\hat{\nabla}_{X}Y$ on $\tilde{M}/\tilde{\mathfrak{F}}$. Clearly $\hat{\nabla}$ defines a complete flat linear connection on $\tilde{M}/\tilde{\mathfrak{F}}$ which pulls back to \tilde{H} on \tilde{M} . Since \tilde{M} is simply connected, the exact homotopy sequence of the fibration shows that $\tilde{M}/\tilde{\mathfrak{F}}$ is simply connected. Hence $\tilde{M}/\tilde{\mathfrak{F}}$ is affinely isomorphic to R^q with its canonical linear connection [6]. Since R^q is contractible, the leaves of $\tilde{\mathfrak{F}}$ are simply connected and $\tilde{\mathfrak{F}}$ is a product foliation thus completing the proof of Theorem 2.

Suppose that M is compact, and let \mathfrak{F} be a codimension-one foliation of M supporting a complete flat basic connection. Let $\pi\colon \tilde{M}\to M$ be the universal cover of M, and $f\colon \tilde{M}\to R$ be a fibration whose fibers are the leaves of \mathfrak{F} . Let $G=\{(\begin{smallmatrix} a&b\\0&1\end{smallmatrix})\colon a\neq 0\}$ be the two-dimensional affine group. Let $\Gamma=\text{image }\Phi$. Then Γ is a finitely generated subgroup of G which acts in a natural way on R. For $x\in R$, let $\Gamma(x)$ denote the orbit of x under Γ . Let $L\in \mathfrak{F}$. Choose a leaf $\tilde{L}\in \mathfrak{F}$ such that $\pi(\tilde{L})=L$, and let $x=f(\tilde{L})$. Then $\Gamma(x)$ depends only on the leaf L, and we denote this orbit by Γ^L . Clearly L is dense in M if and only if Γ^L is dense in R. Suppose Γ is abelian. Then Φ induces a surjection $H_1(M,Z)\to \Gamma$, and hence Γ has polynomial growth of degree R has a surjection of R are dense. Since a leaf in an exceptional minimal set of a R codimension-one foliation has exponential growth R it follows that R has no exceptional minimal sets.

The following example shows that completeness is an essential hypothesis in Theorem 2. Define $f: R^3 \to R$ by $f(x, y, z) = e^y \sin 2\pi x$. Then f is a smooth submersion, and defines a codimension-one foliation $\widetilde{\mathscr{F}}$ of R^3 . This foliation is invariant under the action of Z^3 on R^3 , and hence passes to a foliation $\widetilde{\mathscr{F}}$ of the three-dimensional torus. Let G be the two-dimensional affine group, and define $\Phi: Z^3 \to G$ by $\Phi(n, m, p) = \binom{e^m \ 0}{0}$. Then $f \circ T_{(n,m,p)} = \Phi(n, m, p) \circ f$ for all $(n, m, p) \in Z^3$ where $T_{(n,m,p)}$ denotes the translation of R^3 determined by (n, m, p). Hence there is a Haefliger cocycle $\{(U_\alpha, f_\alpha, g_{\alpha\beta})\}_{\alpha,\beta\in A}$ defining \mathscr{F} such that each $g_{\alpha\beta}$ is the restriction of some $\Phi(n, m, p)$. The canonical linear connection on R is preserved by the maps $\Phi(n, m, p)$, and hence induces a flat basic connection for \mathscr{F} . This connection however is not complete. Indeed, the leaf space of $\widetilde{\mathscr{F}}$ is a non-Hausdorff one-manifold.

References

- [1] R. Blumenthal, *Transversely homogeneous foliations*, Ann. Inst. Fourier (Grenoble) **29** (1979) 143–158.
- [2] R. Bott, Lectures on characteristic classes and foliations, (notes by L. Conlon), Lecture Notes in Math. Vol. 279, Springer, New York, 1972, 1–80.
- [3] L. Conlon, Transversally parallelizable foliations of codimension two, Trans. Amer. Math. Soc. 194 (1974) 79–102.
- [4] P. Molino, Etude des feuilletages transversalement complets et applications, Ann. Sci. École Norm. Sup. 10 (1977) 289-307.
- [5] J. Plante, Measure preserving pseudogroups and a theorem of Sacksteder, Ann. Inst. Fourier (Grenoble) 25 (1975) 237-249.
- [6] J. Wolf, Spaces of constant curvature, McGraw-Hill, New York, 1967.

SAINT LOUIS UNIVERSITY