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FOLIATED MANIFOLDS WITH FLAT BASIC
CONNECTION

ROBERT A. BLUMENTHAL

1. Introduction and statement of results

Let % be a smooth codimension-g foliation of a smooth manifold M. Let
T(M) denote the tangent bundle of M, and let E C 7(M) be the subbundle
consisting of the vectors tangent to the leaves of ¥. Let Q = T(M)/E be the
normal bundle of ¥, and let F(Q) be its frame bundle, a principal GL(g, R)
bundle. Recall that a connection on F(Q) is said to be basic if the parallel
translation which it defines along paths lying in a leaf of ¥ agrees with the
“natural parallelism along the leaves” [3]. Equivalently, if #: T(M) — Q is the
natural projection, and if T'(E), T'(Q), and (M) denote the space of smooth
sections of the vector bundles E, Q, and T( M) respectively, then the associated
Koszul operator v: X(M) X I'(Q) - I'(Q) satisfies the condition that VY
=a(X,Y]) for all X € T'(E) and all Y &€ I'(Q), where Y is any vector field
on M such that 7(Y) = Y, and [ X, Y] denotes the usual Lie bracket of vector
fields [2]. In the present work we study foliated manifolds supporting a flat
basic connection, that is, a basic connection with vanishing curvature and
torsion.

To begin, we have the following nonexistence result.

Theorem 1. If M is compact with finite fundamental group, then M does not
support a foliation with flat basic connection.

As a corollary to the proof of Theorem I, we will obtain

Corollary 1. Let (M, %) be a foliated manifold with flat basic connection. If
H(M, Z) =0, then ¥ admits a transverse volume element; that is, % is defined
by a nowhere zero closed g-form on M, ¢ = codim(%).

It is well-known (see, e.g., [6]) that the universal cover of an n-dimensional
manifold supporting a complete flat linear connection is R" where the lifted
connection corresponds to the canonical linear connection on R". We gener-
alize this codimension-n result to foliations of arbitrary codimension.
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Theorem 2. Let (M, %) be a folzated manifold with a complete ﬂat basic
connection. Then the universal cover M of M is a product L X R9, where L is the
(common) universal cover of the leaves of §, the leaves of the lifted foliation are
identified with the sets L X {x}, x € RY, and the lifted connection corresponds to
the basic connection on L X R? determined by the canonical linear connection
on RY.

Corollary 2. If M" supports a nonsingular flow with a complete flat basic
connection, then the universal cover of M" is R".

Corollary 3. Let (M", %) be a codimension-(n — 2) foliation with a complete
flat basic connection. Then either

(i) the universal cover of M" is R", or

(ii) the leaves of F are spheres and projective planes.

Theorem 3. Let & be a codimension-one foliation of a compact manifold M
with a complete flat basic connection. Then either

(1) all the leaves of ¥ are dense, or

(ii) all the leaves of ¥ have polynomial growth of degree < B,(M), the first
Betti number of M.

In particular, ¥ has no exceptional minimal sets.

2. Proofs of the theorems
Let (M, %) be a foliated manifold with a flat basic connection. Via a choice
of Riemannian metric on M, we may regard Q as a subbundle of T(M)
complementary to E. Thus T(M) = E ® Q, and the covariant differentiation
operator V corresponding to the basic connection then satisfies

vxY=[X,Y]p forall X € T(E), Y € I(Q),

where [ X, Y], denotes the Q-component of the Lie bracket of the vector fields
Xand Y.

Let p: F(Q) — M be the bundle projection. The connection on F(Q) gives
rise to a smooth GL(g, R)-invariant distribution H on F(Q) such that T(F(Q))
=V ® H where V C T(F(Q)) is the subbundle consisting of vertical vectors,
i.e., vectors tangent to the fibers of p. Let w be the corresponding connection
form, a smooth g/(q, R)-valued one-form on F(Q). The curvature form is the
gl(q, R)-valued two-form § on F(Q) defined by &, (X, Y) = (dQ),( Xy, Yy),
u € F(Q), X, Y € T(F(Q)) where X;; and Y are the H-components of X and
Y respectively. For u € F(Q), X € T,(F(Q)), let 8,(X) be the ordered g-tuple
of real numbers obtained by taking the components of the vector ( p, (X No

with respect to the basis u of Q,,,,- Then 6 is a smooth R?-valued one-form on
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F(Q). The torsion form of H is the R%-valued two-form ® on F(Q) defined by
0,(X,Y) = (d8).(Xy, ¥y), u€F(Q),X,YET(FQ)).

Since H is flat, we have @ = @ = 0.

Let (w});{ ;=1 and (Slj- 7:=1 be the components of w, respectively £, with
respect to the standard basis of gi(gq, R). Let (8°)%_, and (@")L_, be the
components of 8, respectively ©, with respect to the standard basis of RY. Since
© =0fori=1,---,gand Slj‘ =0fori,j=1,---,gq, the structure equations of
the connection take the form

df'=-F NG/, i=1,--q
J

dwj = —Ew’)(/\wj‘, i,j=1,--,q.
k

Let 7 € R4. For each u € F(Q), let B(h), be the unique horizontal vector in
T.(F(Q)) such that p, (B(h),)= hju, + -+ +h,u, where h = (h,, -, h,),
u = (uy, - -,u,). This defines the basic vector field B(4) on F(Q) correspond-
ing to h. Clearly 8(B(h)) = h for all h € R9. Let {e|,- - *,e,} be the standard
basis of R, and B(e,), - -, B(e,) the corresponding basic vector fields.

Let x € M and u € p~'(x). Since © = 0, the distribution H is integrable,
and hence we can find a neighborhood U of x in M and a smooth section
s: U — F(Q) such that s(U) is an integral manifold of H. For y € U, set
X, = p.(B(e;)y,), 1 = 1,--+,q. Then Xj,- - -, X, are smooth independent nor-
mal vector fields on U. We have

0= @(B(e,-), B(ej)) = dH(B(e,.), B(ej))
= B(e,)0(B(e,)) = B(e,)0(B(e,)) — 0([ B(e)), B(e))])
= —0([B(ei)a B(ej)])a

and so [X,, X;]o = 0. Since X, - -, X, are parallel with respect to the connec-
tion H, and hence parallel along the leaves of ¥, there exists (shrinking U if
necessary) a smooth submersion f: U — R such that kernel (f,,) = E, and

d
X )=— ,
f*,v( '.v) ax’ 11
Let F(RY) be the frame bundle of RY, and w’ be the connection form on
F(RY) corresponding to the canonical linear connection on RY. Let f,: p~'(U)
— F(RY) be the map induced by f. Since H is a basic connection for ¥, it
follows that the foliation of p~'(U) whose leaves are the level sets of f, is
horizontal. Thus we have decompositions
(1) H = kernel(£,), ® span{B(e,), - -, Be,)},

i=1,---,q forallyeU.
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() T(F(Q)) = ¥ ® kemnel(£,), ® span{B(e,),- -, B(e,)}.

Since @ and (f,)*w’ agree on each of the subbundles occurring in (2), we
have that « = (f,)*«’ on p YU). Thus we can choose an R9cocycle
{(Ur fur 8ap)Yapcn 0N M where

(i) {U,}.e4 is an open cover of M;

(i) f,: U, = R7is a smooth submersion constant along the leaves of %/ U,;

(i) g.p: fo(U, N Up) = f(U, N Up) is a diffeomorphism satisfying f, =
gap° foon U, N U
such that ( f, )*&’ = w on p~'(U,) for each a € 4.

If U, nU; # @, then we have ([ )*(84p5, )"0 = (8ap © fp)iw =
(fo,)'e" = w = (f, )« Hence (g, )*w’ = " on F(RY) lfg(Uaﬂys)’ and 50 g,z
is the restriction of an affine transformation of R? Let m: M — M be the
universal cover of M. There exists a submersion f: M — R constant along the
leaves of &% = 7-(F) [1]. This is clearly impossible if M is compact with finite
fundamental group thus proving Theorem 1.

Let G be the group of affine transformations of R, that is, the semi-direct
product of R? and GL(g, R). By [1], there is a homomorphism @: #(M) - G
such that for each covering transformation 7 € 7,( M) the diagram

is commutative. Let p: m;( M) — R be the composition
0] a det
7(M)>G3GL(g, R) =R

where a is projection onto the GL(g, R) factor, and det denotes the determi-
nant function. If H (M, Z) = 0, then p is the trivial homomorphism, and
hence the image of ® is contained in the subgroup of G given by the
semi-direct product of R? and SL(g, R). Thus we can find an R%cocycle
{(Uss fa> 8ap)}a,pe 4 defining & such that each g, preserves the natural volume
element on R?. This induces a nowhere zero closed ¢g-form on M defining ¥.
Suppose now that H is complete. Then H lifts to a complete flat basic
connection H on the bundle of normal frames of &. Since M is simply
connected, the holonomy group of H is trivial and hence ¥is a transversely
complete e-foliation [3). Thus the leaf space M /@' is a smooth Hausdorff
g-dimensional manifold, and the natural projection M — M /"3' is a smooth
fiber bundle whose fibers are the leaves of @[3], [4]. Let ¥ be the covariant
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differentiation operator arising from the connection H. Let X and Y be smooth
vector fields on M/%. Let X and Y be smooth normal vector fields on M which
are parallel along the leaves of % and projectto X and Y respectively. Then if Z
is a smooth vector field on M tangent to the leaves of &, the vanishing of the
curvature of H gives ‘&Z”%,;f’ = @;@Z‘f’ + 6[ z. f]f‘ But [Z, X]is tangent to &
since X is parallel along the leaves. Hence, since Y is paralle] along the leaves,
we have v;¥ = V[ z X]Y 0. Thus viYis parallel along the leaves of ¥, and
hence projects to a vector field vyY on M /9. Clearly v defines a complete
flat linear connection on M / f which pulls back to H on M. Since M is simply
connected, the exact homotopy sequence of the fibration shows that M /55 is
simply connected. Hence M /gf is affinely isomorphic to R7 with its canonical
linear connection [6]. Since R? is contractible, the leaves of & are simply
connected and & is a product foliation thus completing the proof of Theorem
2.

Suppose that M is compact, and let & be a codimension-one foliation of M
supporting a complete flat basic connection. Let 7: M — M be the universal
cover of M, and f: M — R be a fibration whose fibers are the leaves of &. Let
G = {(§?): a # 0} be the two-dimensional affine group. Let T’ = image ®.
Then T is a finitely generated subgroup of G which acts in a natural way on R.
For x € R, let F(x) denote the orbit of x under I'. Let L € %. Choose a leaf
L € & such that 7(L) = L, and let x = f(L). Then I'(x) depends only on the
leaf L, and we denote this orbit by I'L. Clearly L is dense in M if and only if
I'Z is dense in R. Suppose T is abelian. Then @ induces a surjection H,(M, Z)
- I', and hence I' has polynomial growth of degree < 8,(M). Thus all the
leaves of & have polynomial growth of degree < 8,(M), [1]. If I is not abelian,
then all the orbits of I are dense in R, and so all the leaves of & are dense.
Since a leaf in an exceptional minimal set of a C? codimension-one foliation
has exponential growth [5], it follows that ¥ has no exceptional minimal sets.

The following example shows that completeness is an essential hypothesis in
Theorem 2. Define f: R* - R by f(x, y, z) = e”sin 277x Then f is a smooth
submersion, and defines a codimension-one foliation % of R’. This foliation is
invariant under the action of Z* on R3, and hence passes to a foliation ¥ of the
three-dimensional torus. Let & be the two-dimensional affine group, and define
®: 7> > G by ®(n,m, p)=(§" ). Then fo T, ,, ., = ®(n, m, p) o f for all
(n,m, p) € Z° where T, , ,, denotes the translation of R> determined by
(n, m, p). Hence there is a Haefliger cocycle {(U,, f,» 8u5)}apec defining F
such that each g, is the restriction of some ®(n, m, p). The canonical linear
connection on R is preserved by the maps ®(», m, p), and hence induces a flat
basic connection for . This connection however is not complete. Indeed, the
leaf space of ¥ is a non-Hausdorff one-manifold.
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